Оглавление
Л 21   Л 22   Л 23   Л 24   Л 25   Л 26   Л 27

Лекция 24.
Моделирование случайной величины
с заданным законом распределения

Большей информативностью, по сравнению с такими статистическими характеристиками как математическое ожидание, дисперсия, для инженера обладает закон распределения вероятности случайной величины X. Представим, что X принимает случайные значения из некоторого диапазона. Например, X — диаметр вытачиваемой детали. Диаметр может отклоняться от запланированного идеального значения под влиянием различных факторов, которые нельзя учесть, поэтому он является случайной слабо предсказуемой величиной. Но в результате длительного наблюдения за выпускаемыми деталями можно отметить, сколько деталей из 1000 имели диаметр X1 (обозначим NX1), сколько деталей имели диаметр X2 (обозначим NX2) и так далее. В итоге можно построить гистограмму частости диаметров, откладывая для X1 величину NX1/1000, для X2 величину NX2/1000 и так далее. (Обратите внимание, если быть точным, NX1 — это число деталей, диаметр которых не просто равен X1, а находится в диапазоне от X1 – Δ/2 до X1 + Δ/2, где Δ = X1 – X2). Важно, что сумма всех частостей будет равна 1 (суммарная площадь гистограммы неизменна). Если X меняется непрерывно, опытов проведено очень много, то в пределе N –> ∞ гистограмма превращается в график распределения вероятности случайной величины. На рис. 24.1, а показан пример гистограммы дискретного распределения, а на рис. 24.1, б показан вариант непрерывного распределения случайной величины.

[ Рис. 24.1. Сравнение дискретного и непрерывного законов распределения случайной величины ]
Рис. 24.1. Сравнение дискретного и непрерывного законов распределения случайной величины

В нашем примере закон распределения вероятности случайной величины показывает насколько вероятно то или иное значение диаметра выпускаемых деталей. Случайной величиной является диаметр детали.

В производстве и технике часто такие законы распределения заданы по условию задачи. Наша задача сейчас состоит в том, чтобы научиться имитировать появление конкретных случайных событий согласно вероятностям такого распределения.

Метод ступенчатой аппроксимации

Так как законы распределения вероятности событий могут быть различной формы, а не только равновероятными, то необходимо уметь превращать равномерный ГСЧ в генератор случайных чисел с заданным произвольным законом распределения. На рис. 21.3 это соответствует двум первым блокам метода статистического моделирования. Для этого непрерывный закон распределения вероятности события дискретизируем, превратим в дискретный.

Обозначим: hi — высота i-го столбца, f(x) — распределение вероятности (показывает насколько вероятно некоторое событие x). Значение hi операцией нормировки необходимо перевести в единицы вероятности появления значений x из интервала xi < x ≤ xi + 1: Pi = hi/(h1 + h2 + … + hi + … + hn).

Операция нормировки обеспечивает сумму вероятностей всех n событий равную 1:

[ Формула 01 ]

На рис. 24.2 показаны графически переход от произвольного непрерывного закона распределения к дискретному (рис. 24.2, а), отображение получаемых вероятностей на интервал rрр[0; 1] и генерация случайных событий с использованием эталонного равномерно распределенного ГСЧ (рис. 24.2, б).

[ Рис. 24.2. Иллюстрация метода ступенчатой аппроксимации ]
Рис. 24.2. Иллюстрация метода ступенчатой аппроксимации

Заметим, что внутри интервала xi < x ≤xi + 1 значение x теперь не различимо, одинаково. Метод огрубляет изначальную постановку задачи, переходя от непрерывного закона распределения к дискретному. Поэтому следует учитывать количество разбиений n из условий точности представления.

На рис. 24.3 показан фрагмент алгоритма, реализующего описанный метод. Алгоритм генерирует случайное число, равномерно распределенное от 0 до 1. Затем, сравнивая границы отрезков, расположенных на интервале от 0 до 1, представляющих собой вероятности P выпадения тех или иных случайных величин X, определяет в цикле, какое из случайных событий i в результате этого выпадает.

[ Рис. 24.3. Блок-схема алгоритма, реализующего метод ступенчатой аппроксимации ]
Рис. 24.3. Блок-схема алгоритма, реализующего
метод ступенчатой аппроксимации

Заметим, что внутри интервала xi < x ≤ xi + 1 значение x теперь не различимо, одинаково. Метод огрубляет изначальную постановку задачи, переходя от непрерывного закона распределения к дискретному. Поэтому следует учитывать количество разбиений n из условий точности представления.

Метод усечения

Метод используется в случае, когда функция задана аналитически (в виде формулы). График функции вписывают в прямоугольник (см. рис. 24.4). На ось Y подают случайное равномерно распределенное число из ГСЧ. На ось X подают случайное равномерно распределенное число из ГСЧ. Если точка в пересечении этих двух координат лежит ниже кривой плотности вероятности, то событие X произошло, иначе нет.

Недостатком метода является то, что те точки, которые оказались выше кривой распределения плотности вероятности, отбрасываются как ненужные, и время, затраченное на их вычисление, оказывается напрасным. Метод применим только для аналитических функций плотности вероятности.

[ Рис. 24.4. Иллюстрация метода усечения ]
Рис. 24.4. Иллюстрация метода усечения

На рис. 24.5 показан алгоритм, реализующий метод усечения. В цикле генерируется два случайных числа из диапазона от 0 до 1. Числа масштабируются в шкалу X и Y и проверяется попадание точки со сгенерированными координатами под график заданной функции Y = f(X). Если точка находится под графиком функции, то событие X произошло с вероятностью Y, иначе точка отбрасывается.

[ Рис. 24.5. Блок-схема алгоритма, реализующего метод усечения ]
Рис. 24.5. Блок-схема алгоритма, реализующего метод усечения

Метод взятия обратной функции

Допустим, что нам задан интегральный закон распределения вероятности F(x), где f(x) — функция плотности вероятности и

[ Формула 02 ]

Тогда достаточно разыграть случайное число, равномерно распределенное в интервале от 0 до 1. Поскольку функция F тоже изменяется в данном интервале, то случайное событие x можно определить взятием обратной функции по графику или аналитически: x = F–1(r). Здесь r — число, генерируемое эталонным ГСЧ в интервале от 0 до 1, x1 — сгенерированная в итоге случайная величина. Графически суть метода изображена на рис. 24.6.

[ Рис. 24.6. Иллюстрация метода обратной функции для генерации случайных событий x, значения которых распределены непрерывно. На рисунке показаны графики плотности вероятности и интегральной плотности вероятности от х ]
Рис. 24.6. Иллюстрация метода обратной функции для генерации случайных
событий x, значения которых распределены непрерывно. На рисунке показаны
графики плотности вероятности и интегральной плотности вероятности от х

Данным методом особенно удобно пользоваться в случае, когда интегральный закон распределения вероятности задан аналитически и возможно аналитическое взятие обратной функции от него, как это и показано на следующем примере.

Пример 1. Примем к рассмотрению экспоненциальный закон распределения вероятности случайных событий f(x) = λ · eλx. Тогда интегральный закон распределения плотности вероятности имеет вид: F(x) = 1 – eλx.

Так как r и F в данном методе предполагаются аналогичными и расположены в одном интервале, то, заменяя F на случайное число r, имеем: r = 1 – eλx.

Выражая искомую величину x из этого выражения (то есть, обращая функцию exp()), получаем: x = –1/λ · ln(1 – r).

Так как в статическом смысле (1 – r) и r — это одно и тоже, то x = –1/λ · ln(r).

На рис. 24.7 показан фрагмент алгоритма, реализующего метод обратной функции для экспоненциального закона.

[ Рис. 24.7. Фрагмент блок-схемы алгоритма, реализующей метод обратной функции для экспоненциального закона ]
Рис. 24.7. Фрагмент блок-схемы алгоритма,
реализующей метод обратной функции
для экспоненциального закона
[ ] Лекция 23. Моделирование случайного события… Лекция 25. Моделирование нормально… [ ]
Л 21   Л 22   Л 23   Л 24   Л 25   Л 26   Л 27